

TUTORIEL – Calcul de poutre en 10 étapes avec l'outil SmartDesign

Problématique

L'outil SmartDesign est une solution de calculs mécaniques qui vous permet de faire rapidement vos calculs de poutre en diminuant le risque d'erreurs.

L'outil SmartDesign (formulaires mécaniques)

L'outil SmartDesign (Formulaires mécaniques) s'adresse à tous les concepteurs mécaniques qui souhaitent valider des éléments standards mécaniques et produire rapidement des notes de calcul. L'outil SmartDesign (Formulaire mécaniques) fait partie de l'offre myCADservices Premium.

Sommaire

- 1. Choix de l'outil
- 2. Choix de la fiche de calcul
- 3. Choix du matériau
- 4. Saisie des données
- 5. Moment de la section
- 6. Coefficient de concentration de contrainte
- 7. Coefficient de sécurité souhaité
- 8. Validation
- 9. Remplissage du cartouche
- 10. Sauvegarde

Déroulé

Choix de l'outil

Dans un premier temps, ouvrez l'outil SmartDesign. Puis, choisissez l'outil que vous souhaitez utiliser dans la liste déroulante.

AuteurBrieuc NICOLAS, Avant -vente, VisiativDate23.02.2017ProduitSmartDesignVersionVersion 2015.17.02

Choix de la fiche de calcul

Déterminez la fiche de calcul idoine que vous allez appliquer.

Choix du matériau

Par la suite, vous devez sélectionner le matériau adéquat. Il est tout à fait possible de modifier et d'enrichir cette base si vous le souhaitez.

Famille : Acier	*						
Caractéristiques du mat	ériau choisi (en Résistance élastique Re :	N/mm^2) Résistance élastique en compression Rec :	Résistance élastique au glissement Reg :	Module d'Young E :	Module de Coulomb G :	Coefficiant de poisson :	^
Acier S235 (E24)	235	235	117.5	210000	81800	0.285	
Acier \$355 (E36)	355	355	248.5	210000	81800	0.285	
Acier E295 (A50)	295	295	147.5	210000	81800	0.285	
Acier C22 (XC18)	255	255	127.5	210000	81800	0.285	
Acier C35 (XC38)	335	335	234.5	210000	81800	0.285	
A HILL CAE (VCAD)	275	275	262.5	210000	81800	0.285	

Saisie des données

Puis, saisissez le données (dimensions, charge) dans la case prévue à cet effet.

Données :	Symbole	Unité	Valeur	Informations
Longueur de la poutre	ι	mm	1500	
Coefficient de charge	р	N/mm	15	
Moment quadratique de la section	lgz	mm⁴	3,178E+06	$1 \text{cm}^4 = 10\ 000 \text{mm}^4$
Ordonnée du point le plus éloigné de la fibre neutre	v	mm	60	[1]
Coefficient de concentration de contrainte	Kf		1,397	Vérifier Igz = Igz de la section faible
Coefficient de sécurité souhaité	S		2	

Réaction en A et B	А	N	8437,5	= 3.p.L/8
Réaction en C	С	N	28125	= 10.p.L/8
Effort tranchant en A	Ту	N	-8437,5	= -3.p.L/8
Effort tranchant en C- (avant C)	Ty-	N	14062,5	= 5.p.L/8
Effort tranchant en C+ (après C)	Ty+	N	-14062,5] = -5.p.L/8
Effort tranchant en B	Ту	N	8437,5	= 3.p.L/8
Moment de flexion maximal (en C)	Mf	N*mm	-4,219E+06	= -p.L ² /8
Contrainte normale maximale dans la poutre	σ max	N/mm²	111,276	= Mf.v/lgz Kf
Coefficient de sécurité résultant	Sr		2,112	= Re/σ max
Flèche maximale (en x=0,42.L)	У	mm	-0,615	= -p.L ⁴ /(185.E.lgz)

Validation :	
Condition en flexion	Sr > S

AuteurBrieuc NICOLAS, Avant -vente, VisiativDate23.02.2017ProduitSmartDesignVersionVersion 2015.17.02

Moment de la section

Lorsque vous arrivez au moment de la section, cela vous donne accès au choix du profil à utiliser. Le retour à la fiche se fait en cliquant sur le lien "retour fiche en cours" avec copie de la valeur évaluée.

Sources : "Guide du calcul en mécanique" (G.C.), Editions Hachette, OB/2002 ⁰Guide des Sciences et Technologies industrielles" (G.S.), Editions Nathan, 08/2000

Dimensions :	Symbole	Unité	Valeur	Informations
hauteur du profilé	h	mm	120	
Largeur du profilé	b	mm	64	
Epaisseur de l'ame	a	mm	4,4	
Epaisseur de la semelle	S	mm	6,3	
Rayon intérieur	r	mm	7	

Caractéristiques	Symbole	Unité	Valeur	Informations
Point le plus éloigné de la fibre neutre y	Vy	mm	60	
Point le plus éloigné de la fibre neutre z	Vz	mm	32	
Aire de la section	S	mm²	1320	
Masse linéique (Acier)	MI	g/mm	10,4	MI= S * 0.0078
Moment quadratique suivant y	ly	mm⁴	3,178E+06	Retour fiche en cours
Moment quadratique suivant z	Iz	mm*	2,767E+05	Retour fiche en cours
Module de flexion suivant y	Wy	mm ⁵	52966,667	Wy=ly/Vy
Module de flexion suivant z	Wz	mm ³	8646,875	Wz=Iz/Vz

Coefficient de concentration de contrainte

Si nécessaire, spécifiez un coefficient de concentration de contrainte à l'aide de l'assistant. Le retour à la fiche se fait par le lien "retour fiche en cours" avec copie de la valeur évaluée.

Coefficient de sécurité souhaité

Ensuite, saisissez le coefficient de sécurité cible. Le tableau proposé vous permet d'assister votre choix.

Coefficient de sécurité :

Coefficient de sécurité :	Conditions générales de calculs
1,5 à 2	Cas exceptionnels de grande légèreté. Hypothèse de charges surévaluées
2 à 3	Construction où l'on recherche la légèreté (aviation). Hypothèse de calcul la plus défavorable (charpente avec vent, neige, engrenage avec une seule dent en prise)
3 à 4	Bonne construction, calculs soignés, haubans fixes
4 à 5	Construction courante, léger effort dynamique non pris en compte, treuils)
5 à 8	Calculs sommaires, effort difficile à évaluer (cas de choc, mouvements alternatifs, appareils de levage, manutention)
8 à 10	Matériaux non homogènes. Chocs, élingues de levages
10 à 15	Chocs très importants, très mal connus (presse, ascenseur)

Validation

Ainsi, le résultat se calcule en fonction du coefficient de sécurité cible et du coefficient de sécurité calculé.

Coefficient de concentration de contrainte	Kf		1,823	Vérifier Igz = Igz de la section faible
Coefficient de sécurité souhaité	S		3	
	Symbole			
Réaction en A et B	A	N	8437,5	= 3.p.L/8
Réaction en C	С	N	28125	= 10.p.L/8
Effort tranchant en A	Ту	Ν	-8437,5	= -3.p.L/8
Effort tranchant en C- (avant C)	Ty-	N	14062,5	= 5.p.L/8
Effort tranchant en C+ (après C)	Ty+	N	-14062,5	= -5.p.L/8
Effort tranchant en B	Ту	N	8437,5	= 3.p.L/8
Moment de flexion maximal (en C)	Mf	N*mm	-4,219E+06	= -p.L ² /8
Contrainte normale maximale dans la poutre	σ max	N/mm ²	145,209	= I Mf.v/Igz IKf
Coefficient de sécurité résultant	Sr		1,618	= Re/σ max
Flèche maximale (en x=0,42.L)	y	mm	-0,615	= -p.L ⁴ /(185.E.lgz)

Validation :	
Condition en flexion	Sr < S

AuteurBrieuc NICOLAS, Avant -vente, VisiativDate23.02.2017ProduitSmartDesignVersionVersion 2015.17.02

Remplissage du cartouche

Remplissez le cartouche de votre formulaire de calcul.

Sauvegarde

Enfin, sauvegardez votre document pour une utilisation ou modification ultérieure, et imprimez-le pour le joindre à votre dossier de conception.

En conclusion

En somme, l'outil SmartDesign vous permet de :

- Disposer d'un document clair en quelques étapes, qui répond aux exigences de vos partenaires, donneurs d'ordre etc.
- Optimiser votre conception en économisant de la matière
- Gagner en réactivité et autonomie

Usages

Conception

Activités

- BE Sous-traitance
- Carrosserie Industrielle
- Chaudronnerie Serrurerie
- Machines spéciales robotique
- Tôlerie
- Tuyauterie/Process/Usine