

TA - Comment résoudre une instabilité sur votre étude statique d'assemblage ou de pièce mécano-soudée ?

Résumé

Lors de l'exécution d'une étude statique sur un assemblage ou une pièce mécano-soudée multi-corps, il est possible que celle-ci échoue. Dans ce cas, cela affiche un message vous informant que votre modèle est instable. Il y a plusieurs explications possibles.

Voici une astuce pour trouver quelle explication correspond à votre problème.

Solutions

1. Utiliser l'option d'étude de faible raideur

Dans un premier temps, il faut activer l'option « Utiliser une faible raideur pour stabiliser le modèle ». Pour cela, il faut faire un clic-droit sur le nom de votre étude puis cliquer sur « propriétés ». Ensuite, cliquez sur ok.

at com	_			
	\$	Exécute <u>r</u>	Static Continues Méthode adaptative Effets thermiques/Ecoulement Remarque	
- 1	•	Actualiser tous les composants	Jeu/Contact	
+ (12	'E <u>x</u> porter	Prendre en compte la friction Coefficient de friction: 0.05 globale	
	9	Ten <u>d</u> ancier	Améliorer les contacts entre surfaces de type Pas de pénétration (plus lent)	
۱ 👰 ا	*	<u>C</u> réer une étude de sous-modélisation	Options de contact solidaire incompatible O Automatique	
<u>.</u> (1	<u>G</u> estionnaire de cas de chargement	© Simplifié	
	2	Copier l'étude	Précis (plus lent)	
	×	E <u>f</u> facer	 Grands déplacements Vérifier les forces externes 	
		P Dé <u>t</u> ails	Solveur	
		Pr <u>o</u> priétés	FFEPlus Tenir compte du Stress Stiffening	
		<u>P</u> ropriétés de masse	 Utiliser une faible raideur pour stabiliser le modèle Utiliser la relaxation inertielle 	
		Définir des courbes de <u>f</u> onctions	Dossier de résultats E:\Greg\Dossier clients\Solidworks\DIEHI	
		Reno <u>m</u> mer		
		<u>C</u> opier		
		Gestionnaire de coques	OK Annuler Appliquer Aide	

Utiliser une faible raideur pour stabiliser le modèle

Activez cette option pour que le programme ajoute de faibles raideurs visà-vis du sol pour éliminer les instabilités. Si vous appliquez des chargements à un modèle instable, il se déplace et/ou pivote en tant que corps rigide. Vous pouvez appliquer des déplacements imposés appropriés pour éviter les mouvements de corps rigide.

2. Exécuter l'étude et analyser le résultat de déplacement

Dans un second temps, exécutez à nouveau votre étude puis double-cliquez sur votre résultat de déplacement.

Ainsi, vous pourrez observer :

- si une pièce de votre assemblage est désolidarisée de ce dernier et se déplace donc librement
- si une pièce se déforme trop ou pas comme il le faudrait
- 3. Modifier l'étude et désactiver l'option de faible raideur

Une fois l'origine de l'instabilité identifiée, il faudra modifier l'étude :

- ajouter un déplacement imposé
- ajouter un contact entre ensemble
- modifier le maillage
- etc.

Ensuite, désactivez l'option et exécutez votre étude. En effet, cette option a un impact sur vos résultats d'étude et doit être activée uniquement pour diagnostiquer l'origine d'une instabilité.

En conclusion

En somme, l'option de faible raideur vous permet de diagnostiquer l'origine d'une instabilité très rapidement. Cela vous permet de faire des modifications fonctionnelles sans perdre de temps à effectuer des modifications hasardeuses.

Usages

Simulation

Activités

- Chaudronnerie Serrurerie
- Machines spéciales robotique
- Métiers du bois
- Tôlerie